Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
Interdiscip Perspect Infect Dis ; 2024: 3554734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558876

RESUMO

Background: Although meningitis caused by Salmonella species is relatively rare and accounts for <1% of the confirmed cases in neonates, it is associated with case complications and fatality rates up to 50-70% when compared to other forms of Gram-negative bacilli meningitis. Objectives: We conducted an investigation into the first reported case of neonatal meningitis caused by nontyphoidal S. enterica in Jazan, a region in the southwestern part of Saudi Arabia. Methods: CSF and blood culture were collected from a female neonate patient to confirm the presence of bacterial meningitis. WGS was conducted to find out the comprehensive genomic characterization of S. enterica isolate. Results: A 3-week-old infant was admitted to a local hospital with fever, poor feeding, and hypoactivity. She was diagnosed with Salmonella meningitis and bacteremia caused by S. enterica, which was sensitive to all antimicrobials tested. WGS revealed the specific strain to be S. enterica serotype Johannesburg JZ01, belonging to ST515 and cgMLST 304742. Conclusions: We presented a genomic report of rare case of NTS meningitis in an infant who is living in a rural town in Jazan region, Saudi Arabia. Further research is required to understand the impact of host genetic factors on invasive nontyphoidal Salmonella infection.

3.
Diagn Microbiol Infect Dis ; 109(3): 116276, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38613950

RESUMO

Salmonella enterica serotype Typhi (S Typhi) associated urinary tract infections are exceedingly rare, accounting for less than 1% of cases. Such infections have known to occur in immune-compromised or individuals with urogenital structural abnormalities. With the emergence of extensively drug resistant S Typhi strains in Pakistan, the management of its various unique presentations poses therapeutic challenges. We report the first documented case of a 74 years old male patient presenting with relapsed urinary tract infection secondary to extensively drug resistant S Typhi.

4.
Bioorg Chem ; 147: 107334, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38583251

RESUMO

Building upon our previous study on peptoid-based antibacterials which showed good activity against Gram-positive bacteria only, herein we report the synthesis of 34 dimeric peptoid compounds and the investigation of their activity against Gram-positive and Gram-negative pathogens. The newly designed peptoids feature a di-hydrophobic moiety incorporating phenyl, bromo-phenyl, and naphthyl groups, combined with variable lengths of cationic units such as amino and guanidine groups. The study also underscores the pivotal interplay between hydrophobicity and cationicity in optimizing efficacy against specific bacteria. The bromophenyl dimeric guanidinium peptoid compound 10j showed excellent activity against S. aureus 38 and E. coli K12 with MIC of 0.8 µg mL-1 and 6.2 µg mL-1, respectively. Further investigation into the mechanism of action revealed that the antibacterial effect might be attributed to the disruption of bacterial cell membranes, as suggested by tethered bilayer lipid membranes (tBLMs) and cytoplasmic membrane permeability studies. Notably, these promising antibacterial agents exhibited negligible toxicity against mammalian red blood cells. Additionally, the study explored the potential of 12 active compounds to disrupt established biofilms of S. aureus 38. The most effective biofilm disruptors were ethyl and octyl-naphthyl guanidinium peptoids (10c and 10 k). These compounds 10c and 10 k disrupted the established biofilms of S. aureus 38 with 51 % at 4x MIC (MIC = 17.6 µg mL-1 and 11.2 µg mL-1) and 56 %-58 % at 8x MIC (MIC = 35.2 µg mL-1 and 22.4 µg mL-1) respectively. Overall, this research contributes insights into the design principles of cationic dimeric peptoids and their antibacterial activity, with implications for the development of new antibacterial compounds.

5.
J Infect Public Health ; 17(4): 669-675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447323

RESUMO

BACKGROUND: This study presents a comprehensive genomic analysis of NDM and OXA-48-producing Klebsiella pneumoniae in the Western region of Saudi Arabia, traversed by tens of millions of Muslims from various countries annually. This significant influx of visitors invariably leads to the spread and diversity of MDR bacteria. METHODS: Genome sequencing was performed using MiSeq system of 29 CPKP isolates that were NDM and OXA-48-positive isolated from nosocomial infections and demonstrated resistance to most antibiotics, including carbapenems. RESULTS: WGS analysis showed that 12 (41.3%) isolates co-harbored blaOXA-48,blaCTX-M-15 and blaNDM genes. Notably, 16 (55.1%) isolates were identified as high-risk clone ST14, with 50% of these isolates co-harbored blaOXA-48, blaNDM and blaCTX-M-15 genes. All ST14 isolates were identified as capsular genotype KL2 and O1/O2v1 antigen with yersiniabactin locus ypt 14 carried by ICEKp5. The two isolates were identified as ST2096/KL64 hypervirulent K. pneumoniae (hvKp) clone harboring several virulence factors, including the regulator of the mucoid phenotype rmpA2 and aerobactin (iuc-1). Interestingly, two of the hvKp ST383/KL30 isolates were resistant to all tested antimicrobials except colistin and tigecycline, and simultaneously carried numerous ESBLs and carbapenemase genes. These isolates also harbor several virulence factors such as rmpA1, rmpA2, carried on KpVP-1, and aerobactin (iuc-1). CONCLUSION: this study provides insights into the spread and prevalence of high-risk clones of CPKP in the Western region of Saudi Arabia. The ST14 high-risk clone appears to be the predominant CPKP clone in this region, posing a significant threat to public health. This study also reports the presence of two globally disseminated hypervirulent K. pneumoniae (hvKp) clones, namely ST2096 and ST383. Therefore, it is essential to improve surveillance and implement strict infection control measures in this region, which receives a substantial number of visitors to effectively monitor and reduce the spread of high-risk clones of antimicrobial-resistant bacteria, including CPKP.


Assuntos
Ácidos Hidroxâmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Arábia Saudita/epidemiologia , beta-Lactamases/genética , beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Fatores de Virulência/genética , Genômica , Testes de Sensibilidade Microbiana
6.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542998

RESUMO

The increasing utilization of artificial intelligence algorithms in drug development has proven to be highly efficient and effective. One area where deep learning-based approaches have made significant contributions is in drug repositioning, enabling the identification of new therapeutic applications for existing drugs. In the present study, a trained deep-learning model was employed to screen a library of FDA-approved drugs to discover novel inhibitors targeting JAK2. To accomplish this, reference datasets containing active and decoy compounds specific to JAK2 were obtained from the DUD-E database. RDKit, a cheminformatic toolkit, was utilized to extract molecular features from the compounds. The DeepChem framework's GraphConvMol, based on graph convolutional network models, was applied to build a predictive model using the DUD-E datasets. Subsequently, the trained deep-learning model was used to predict the JAK2 inhibitory potential of FDA-approved drugs. Based on these predictions, ribociclib, topiroxostat, amodiaquine, and gefitinib were identified as potential JAK2 inhibitors. Notably, several known JAK2 inhibitors demonstrated high potential according to the prediction results, validating the reliability of our prediction model. To further validate these findings and confirm their JAK2 inhibitory activity, molecular docking experiments were conducted using tofacitinib-an FDA-approved drug for JAK2 inhibition. Experimental validation successfully confirmed our computational analysis results by demonstrating that these novel drugs exhibited comparable inhibitory activity against JAK2 compared to tofacitinib. In conclusion, our study highlights how deep learning models can significantly enhance virtual screening efforts in drug discovery by efficiently identifying potential candidates for specific targets such as JAK2. These newly discovered drugs hold promises as novel JAK2 inhibitors deserving further exploration and investigation.


Assuntos
Inteligência Artificial , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Redes Neurais de Computação
7.
Artigo em Inglês | MEDLINE | ID: mdl-38482091

RESUMO

Erysipelothrix rhusiopathiae is an occupation-related infection that can be found in farm animals or marine life. This infection can present with a spectrum of infection ranging from local cellulitis to aortic endocarditis. Developing endocarditis is rare from this organism with only a few case reports in the literature. We presented a case of E. rhusiopathiae bacteremia that led to aortic valve endocarditis with a Gerbode defect within the mitral valve complicated with an acute exacerbation of congestive heart failure, necessitating emergent valve replacement surgery, with eventual permanent pacemaker due to complete heart block. We intend to highlight some unusual characteristics of this infection including thrombocytopenia and hyponatremia. It is important to identify this infection in early stages to prevent the late disseminating complications including endocarditis.

8.
Saudi J Biol Sci ; 31(4): 103957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38404539

RESUMO

Colostrum is known for its nutraceutical qualities, probiotic attributes, and health benefits. The aim of this study was to profile colostrum microbiome from bovine in rural sites of a developing country. The focus was on microbiological safety assessments and antimicrobial resistance, taking into account the risks linked with the consumption of raw colostrum. Shotgun sequencing was employed to analyze microbiome in raw buffalo and cow colostrum. Alpha and beta diversity analyses revealed increased inter and intra-variability within colostrum samples' microbiome from both livestock species. The colostrum microbiome was mainly comprised of bacteria, with over 90% abundance, whereas fungi and viruses were found in minor abundance. Known probiotic species, such as Leuconostoc mesenteroides, Lactococcus lactis, Streptococcus thermophilus, and Lactobacillus paracasei, were found in the colostrum samples. A relatively higher number of pathogenic and opportunistic pathogenic bacteria were identified in colostrum from both animals, including clinically significant bacteria like Clostridium botulinum, Pseudomonas aeruginosa, Escherichia coli, and Listeria monocytogenes. Binning retrieved 11 high-quality metagenome-assembled genomes (MAGs), with three MAGs potentially representing novel species from the genera Psychrobacter and Pantoea. Notably, 175 antimicrobial resistance genes (ARGs) and variants were detected, with 55 of them common to both buffalo and cow colostrum metagenomes. These ARGs confer resistance against aminoglycoside, fluoroquinolone, tetracycline, sulfonamide, and peptide antibiotics. In conclusion, this study describes a thorough overview of microbial communities in buffalo and cow colostrum samples. It emphasizes the importance of hygienic processing and pasteurization in minimizing the potential transmission of harmful microorganisms linked to the consumption of colostrum.

9.
PLoS One ; 19(2): e0298449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394312

RESUMO

Transvaginal ultrasound probes (TVUS) are used for several gynecological procedures. These need to be disinfected between patient use. In the current study we examine whether UVC delivered using light emitting diodes for 90 seconds can provide sufficient disinfection efficacy. A new UVC device that delivers UVC radiation at 265nm-275nm for 90 seconds was used. TVUS probes were swabbed before and after use in an in vitro fertilization clinic. Microbes on the swabs were cultured and identified. In addition, the ability of the UVC device to provided repeated high-level disinfection was analysed by deliberately contaminating probes with spores of Bacillus subtilis and then performing the UVC disinfection and bacterial culture. 50% of probes were contaminated with bacteria, most commonly Bacillus sp., directly after in vivo use. Whereas 97% were sterile after UVC disinfection for 90 seconds. The UVC treatment resulted in no growth of B. subtilis spores after each of five repeated contaminations with 5-9 x 107 spores on the probes. This study has found that UVC delivered via light emitting diodes for only 90 seconds can produce high level disinfection of transvaginal probes.


Assuntos
Bacillus , Desinfecção , Humanos , Desinfecção/métodos , Raios Ultravioleta , Ultrassonografia/métodos , Bacillus subtilis
10.
Gene ; 909: 148309, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38417687

RESUMO

Glume pubescence is an important morphological trait for the characterization of wheat cultivars. It shows tolerance to biotic and abiotic stresses to some extent. Hg1 (formerly named Hg) locus on chromosome 1AS controls glume pubescence in wheat. Its genetic analysis, fine-mapping and candidate gene analysis have been widely studied recently, however, the cloning of Hg1 has not yet been reported. Here, we conducted a GWAS between a dense panel of 171,103 SNPs and glume pubescence (Gp) in a durum wheat population of 145 lines, and further analyzed the candidate genes of Hg1 combined with the gene expression, functional annotation, and haplotype analysis. As a results, TRITD0Uv1G104670 (TdELD1-1A), encoding glycosyltransferase-like ELD1/KOBITO 1, was detected as the most promising candidate gene of Hg1 for glume pubescence in durum wheat. Our findings not only contribute to a deeper understanding of its cloning and functional validation but also underscore the significance of accurate genome sequences and annotations. Additionally, our study highlights the relevance of unanchored sequences in chrUn and the application of bioinformatics analysis for gene discovery in durum wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Haplótipos , Fenótipo , Genômica
11.
J Virol ; 98(3): e0147623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376991

RESUMO

The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.


Assuntos
Bacteriófagos , Microbiologia Ambiental , Salmonella enterica , Antibacterianos/uso terapêutico , Bacteriófagos/isolamento & purificação , Sensibilidade Colateral a Medicamentos , Lipopolissacarídeos , Salmonella enterica/virologia , Terapia por Fagos , Infecções por Salmonella/terapia , Humanos
12.
Cont Lens Anterior Eye ; 47(2): 102124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341309

RESUMO

BACKGROUND: Ocular infections caused by antibiotic-resistant pathogens can result in partial or complete vision loss. The development of pan-resistant microbial strains poses a significant challenge for clinicians as there are limited antimicrobial options available. Synthetic peptoids, which are sequence-specific oligo-N-substituted glycines, offer potential as alternative antimicrobial agents to target multidrug-resistant bacteria. METHODS: The antimicrobial activity of synthesised peptoids against multidrug-resistant (MDR) ocular pathogens was evaluated using the microbroth dilution method. Hemolytic propensity was assessed using mammalian erythrocytes. Peptoids were also incubated with proteolytic enzymes, after which their minimum inhibitory activity against bacteria was re-evaluated. RESULTS: Several alkylated and brominated peptoids showed good inhibitory activity against multidrug-resistant Pseudomonas aeruginosa strains at concentrations of ≤15 µg mL-1 (≤12 µM). Similarly, most brominated compounds inhibited the growth of methicillin-resistant Staphylococcus aureus at 1.9 to 15 µg mL-1 (12 µM). The N-terminally alkylated peptoids caused less toxicity to erythrocytes. The peptoid denoted as TM5 had a high therapeutic index, being non-toxic to either erythrocytes or corneal epithelial cells, even at 15 to 22 times its MIC. Additionally, the peptoids were resistant to protease activity. CONCLUSIONS: Peptoids studied here demonstrated potent activity against various multidrug-resistant ocular pathogens. Their properties make them promising candidates for controlling vision-related morbidity associated with eye infections by antibiotic-resistant strains.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Peptoides , Animais , Humanos , Peptoides/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Mamíferos
13.
Antib Ther ; 7(1): 53-66, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38371953

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the Middle East respiratory syndrome coronavirus (MERS-CoV) are highly pathogenic human coronaviruses (CoVs). Anti-CoVs mAbs and vaccines may be effective, but the emergence of neutralization escape variants is inevitable. Angiotensin-converting enzyme 2 and dipeptidyl peptidase 4 enzyme are the getaway receptors for SARS-CoV-2 and MERS-CoV, respectively. Thus, we reformatted these receptors as Fc-fusion decoy receptors. Then, we tested them in parallel with anti-SARS-CoV (ab1-IgG) and anti-MERS-CoV (M336-IgG) mAbs against several variants using pseudovirus neutralization assay. The generated Fc-based decoy receptors exhibited a strong inhibitory effect against all pseudotyped CoVs. Results showed that although mAbs can be effective antiviral drugs, they might rapidly lose their efficacy against highly mutated viruses. We suggest that receptor traps can be engineered as Fc-fusion proteins for highly mutating viruses with known entry receptors, for a faster and effective therapeutic response even against virus harboring antibodies escape mutations.

14.
Heliyon ; 10(4): e25865, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384530

RESUMO

The performance of Photovoltaic (PV) modules heavily relies on their structural strength, manufacturing methods, and materials. Damage induced during their lifecycle leads to degradation, reduced power generation and efficiency. Mechanical stresses, originating from manufacturing, transportation, and operational phases impose significant loads on PV modules. These in-service loads encompass various environmental forces such as wind, snow, dust, hail, rain, and heat. In-service loads encompass static and dynamic forces such as wind, snow, dust, hail, rain, and heat. Among these factors, the mechanical loads from hail impacts play a crucial role in PV module performance and require a comprehensive investigation. This research focuses on evaluating the impact of hail loads on different PV modules, following international standards like ASTM 1038-10 and IEC-61215-2. The developed simulator effectively assesses the reliability of PV modules. The number of busbars within a PV module was identified as a key factor influencing the module's resilience to hail impacts. Notably, mono-crystalline PV modules exhibited better resistance to hail loads compared to their poly-crystalline counterparts. The PV modules experience micro-cracking due to hail impacts, leading to an efficiency reduction of 4.15% in mono-crystalline modules and 12.59% in poly-crystalline modules. Similarly, the generated power output decreased by 3.3% and 12.5%, respectively, in these module types.

15.
Carbohydr Polym ; 329: 121775, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286528

RESUMO

Nanocellulose (NC), a one-dimensional nanomaterial, is considered a sustainable material for water and wastewater purification because of its promising hydrophilic surface and mechanical characteristics. In this regard, nanostructured membranes comprising NC and two-dimensional (2D) nanomaterials emerged as advanced membranes for efficient and sustainable water purification. This article critically reviews the recent progress on NC-2D nanostructured membranes for water and wastewater treatment. The review highlights the main techniques employed to fabricate NC-2D nanostructured membranes. The physicochemical properties, including hydrophilicity, percent porosity, surface roughness, structure, and mechanical and thermal stability, are summarized. The key performance indicators such as permeability, rejection, long operation stability, antifouling, and interaction mechanisms are thoroughly discussed to evaluate the role of NC and 2D nanomaterials. Finally, summary points and future development work are highlighted to overcome the challenges for potential practical applications. This review contributes to the design and development of advanced membranes to solve growing water pollution concerns in a sustainable manner.

16.
Saudi Med J ; 45(1): 60-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38220236

RESUMO

OBJECTIVES: To analyze the evolution of tuberculosis (TB) epidemiology in Saudi Arabia in the 5 years following the implementation of the end-TB Strategy. METHODS: A retrospective analysis of surveillance data, reported by the national tuberculosis control program from 2015-2019, was carried out. The annual incidence and the percentage of yearly changes were calculated and compared to the World Health Organization (WHO) milestones, which anticipate a 4-5% annual decline. Additionally, various other epidemiological indicators of TB were examined. RESULTS: The national TB incidence declined from 10.55% per 100,000 in 2015 to 8.76% per 100,000 in 2019, aligning with the WHO's 2019 milestone estimated between 8.59-8.96% per 100,000. While Makkah Region (40.3%) and Riyadh (24.6%) accounted for the majority of cases, Jazan region consistently exhibited the highest incidence throughout the study period. Demographic features shifted towards a younger age category, male, and native dominance. There was a consistent decrease in resistance and intermediate sensitivity to all first-line anti-TB drugs, associated with a substantial decrease in both polydrug resistance (from 4.7-1.9%; p<0.001) and multidrug resistance (from 4.4-2.4%; p=0.008). CONCLUSION: The figures of TB incidence TB in Saudi Arabia between 2015-2019 has met the WHO end-TB milestones, predicting successful progress toward the 2035 goal.


Assuntos
Tuberculose , Masculino , Humanos , Estudos Retrospectivos , Arábia Saudita/epidemiologia , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Tuberculose/tratamento farmacológico , Antituberculosos/uso terapêutico , Incidência
17.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059867

RESUMO

Aquaculture has been recognized as a hotspot for the emergence and spread of antimicrobial resistance genes conferring resistance to clinically important antibiotics. This review gives insights into studies investigating the prevalence of colistin and carbapenem resistance (CCR) among Gram-negative bacilli in aquaculture. Overall, a high incidence of CCR has been reported in aquatic farms in several countries, with CCR being more prevalent among opportunistic human pathogens such as Acinetobacter nosocomialis, Shewanella algae, Photobacterium damselae, Vibrio spp., Aeromonas spp., as well as members of Enterobacteriaceae family. A high proportion of isolates in these studies exhibited wide-spectrum profiles of antimicrobial resistance, highlighting their multidrug-resistance properties (MDR). Several mobile colistin resistance genes (including, mcr-1, mcr-1.1, mcr-2, mcr-2.1, mcr-3, mcr-3.1, mcr-4.1, mcr-4.3, mcr-5.1, mcr-6.1, mcr-7.1, mcr-8.1, and mcr-10.1) and carbapenemase encoding genes (including, blaOXA-48, blaOXA-55, blaNDM, blaKPC, blaIMI, blaAIM, blaVIM, and blaIMP) have been detected in aquatic farms in different countries. The majority of these were carried on MDR Incompatibility (Inc) plasmids including IncA/C, and IncX4, which have been associated with a wide host range of different sources. Thus, there is a risk for the possible spread of resistance genes between fish, their environments, and humans. These findings highlight the need to monitor and regulate the usage of antimicrobials in aquaculture. A multisectoral and transdisciplinary (One Health) approach is urgently needed to reduce the spread of resistant bacteria and/or resistance genes originating in aquaculture and avoid their global reach.


Assuntos
Carbapenêmicos , Colistina , Animais , Humanos , Colistina/farmacologia , Carbapenêmicos/farmacologia , Prevalência , Saúde Pública , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/genética , Plasmídeos , Aquicultura , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
18.
Sci Total Environ ; 912: 169113, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065499

RESUMO

Landslides endanger lives and public infrastructure in mountainous areas. Monitoring landslide traces in real-time is difficult for scientists, sometimes costly and risky because of the harsh terrain and instability. Nowadays, modern technology may be able to identify landslide-prone locations and inform locals for hours or days when the weather worsens. This study aims to propose indicators to detect landslide traces on the fields and remote sensing images; build deep learning (DL) models to identify landslides from Sentinel-2 images automatically; and apply DL-trained models to detect this natural hazard in some particular areas of Vietnam. Nine DL models were trained based on three U-shaped architectures, including U-Net, U2-Net, and U-Net3+, and three options of input sizes. The multi-temporal Sentinel-2 images were chosen as input data for training all models. As a result, the U-Net, using an input image size of 32 × 32 and a performance of 97 % with a loss function of 0.01, can detect typical landslide traces in Vietnam. Meanwhile, the U-Net (64 × 64) can detect more considerable landslide traces. Based on multi-temporal remote sensing data, a different case study in Vietnam was chosen to see landslide traces over time based on the trained U-Net (32 × 32) model. The trained model allows mountain managers to track landslide occurrences during wet seasons. Thus, landslide incidents distant from residential areas may be discovered early to warn of flash floods.

19.
Trop Doct ; 54(2): 165-166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38130144

RESUMO

Annual reported cases of Naegleria fowleri (NF), popularly known as brain eating amoeba, are becoming a huge challenge for Pakistani health authorities. Karachi has seen cases regularly up till the present but Lahore has not. The spread of this amoeba in non-chlorinated water is a major concern for the authorities. NF is an amoeba commonly found in warm freshwater environments such as lakes, hot springs and poorly chlorinated swimming pools. It poses a significant risk during hot weather when water-related recreational activities are popular. Where there is a non-chlorinated water supply, its spread is aggravated.


Assuntos
Amebíase , Infecções Protozoárias do Sistema Nervoso Central , Encefalite Infecciosa , Naegleria fowleri , Humanos , Paquistão/epidemiologia , Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Infecções Protozoárias do Sistema Nervoso Central/epidemiologia , Amebíase/diagnóstico , Amebíase/epidemiologia , Água
20.
Case Rep Cardiol ; 2023: 9948719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074520

RESUMO

Background. Streptococcus gallolyticus (previously known as Streptococcus bovis type-1) bacteremia has a well-established, almost pathognomonic association with colorectal carcinoma, with the most common hypothesized mechanism being ulceration of polyps leading to hematologic dissemination. There are few reported cases of streptococcus bacteremia from other, seemingly benign sources like cellulitis or colonic adenomas. Hence, there is limited focus on skin and soft tissue infections leading to potentially fatal infective endocarditis. Case Presentation. We present a novel case of streptococcus bacteremia from uncommon sources like abdominal wall cellulitis or colonic adenoma leading to infective endocarditis as well as other manifestations, including osteomyelitis and discitis. This report highlights a unique case of streptococcus bacteremia with an uncommon origin, arising from abdominal wall cellulitis or colonic adenoma, ultimately resulting in the development of infective endocarditis. Furthermore, the patient presented with additional clinical manifestations, including osteomyelitis and discitis. Conclusions. Through our case report, we emphasize the importance of investigating uncommon sources like cellulitis when initial malignant workup is negative in streptococcus bacteremia and further elucidate the pathophysiology of streptococcus bacterial dissemination from nonmalignancy-related sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...